HYPERBOLA

1. A conic section is said to be a hyperbola if it's eccentricity is greater than 1 .
2. The equation of a hyperbola in the standard form is $x^{2} / a^{2}-y^{2} / b^{2}=1$.
3. In the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1, b^{2}=a^{2}\left(e^{2}-1\right)$.
4. For the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$, there are two vertices $A(a, 0), A^{\prime}(-a, 0)$; two foci $S(a e, 0)$, $S^{\prime}(-\mathrm{ae}, 0)$; two directrices $\mathrm{x}= \pm \mathrm{a} / \mathrm{e}$ and two axes of which one is transverse axis (principal axis) y $=0$ and the other is conjugate axis $x=0$.
5. A point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is said to be an
i) external point to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if $\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}<1$
ii) internal point to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if $\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}>1$
6. A hyperbola is said to be a rectangular hyperbola if the length of it's transverse axis is equal to the length of it's conjugate axis.
7. The eccentricity of a rectangular hyperbola is $\sqrt{2}$.
8. The hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ are called conjugate hyperbolas.
9. If e_{1}, e_{2} are the eccentricities of two conjugate hyperbolas then $e_{1}^{2}+e_{2}^{2}=e_{1}^{2} e_{2}^{2}$.
10. A chord passing through a point P on the hyperbola and perpendicular to the transverse axis(Principal axis) of the hyperbola is called the double ordinate of the point P .
11. A chord of the hyperbola passing through either of the foci is called a focal chord.
12. A focal chord of a hyperbola perpendicular to the transverse axis (Principal axis) of the hyperbola is called latus rectum. If the latus rectum meets the hyperbola in L and L^{\prime} then $L L^{\prime}$ is called length of the latus rectum.
13. The length of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$.
14. If P is a point on the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ with foci S and S^{\prime} then $\mathrm{PS}^{\prime}-P S=2 \mathrm{a}$.
15. The equation of the hyperbola whose transverse axis is parallel to x-axis and the centre at (α, β) is $\frac{(x-\alpha)^{2}}{a^{2}}-\frac{(y-\beta)^{2}}{b^{2}}=1$.
16. The equation of the hyperbola whose transverse axis is parallel to y - axis and the centre at (α, β) is $\frac{(y-\beta)^{2}}{b^{2}}-\frac{(x-\alpha)^{2}}{a^{2}}=1$.
17. We use the following notation in this chapter $S \equiv \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-1, S_{1} \equiv \frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}-1, S_{11}=S\left(x_{1}, y_{1}\right)=\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}}-1, S_{12}=\frac{x_{1} x_{2}}{a^{2}}-\frac{y_{1} y_{2}}{b^{2}}-1$.
18. Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point and $\mathrm{S} \equiv \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}-1=0$ be a hyperbola. Then
i) P lies on the hyperbola $S=0 \Leftrightarrow S_{11}=0$
ii) P lies inside the hyperbola $S=0 \Leftrightarrow S_{11}>0$
iii) P lies outside the hyperbola $S=0 \Leftrightarrow S_{11}<0$
19. The equation of the chord joining the two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ on the hyperbola $\mathrm{S}=0$ is $\mathrm{S}_{1}+$ $S_{2}=S_{12}$.
20. The equation of the tangent to the hyperbola $\mathrm{S}=0$ at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{S}_{1}=0$.
21. The equation of the normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $P\left(x_{1}, y_{1}\right)$ is $\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=a^{2}+b^{2}$.
22. The condition that the line $y=m x+c$ may be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $c^{2}=a^{2} m^{2}-b^{2}$
23. The equation of a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ may be taken as $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$. The point of contact is $\left(\frac{-a^{2} m}{c}, \frac{-b^{2}}{c}\right)$ where $c^{2}=a^{2} m^{2}-b^{2}$.
24. The condition that the line $l x+m y+n=0$ may be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $a^{2} l^{2}-b^{2} m^{2}=n^{2}$.
25. Two tangents can be drawn to a hyperbola from an external point.
26. If m_{1}, m_{2} are the slopes of the tangents through P to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $m_{1}+m_{2}=$ $\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}, \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{y}_{1}^{2}+\mathrm{b}^{2}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}$.
27. The locus of point of intersection of perpendicular tangents to a hyperbola is a circle concentric with the hyperbola. This circle is called director circle of the hyperbola.
28. The equation to the direction circle of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $x^{2}+y^{2}=a^{2}-b^{2}$.
29. The locus of the feet of the perpendiculars drawn from the foci to any tangent to the hyperbola is a circle concentric with the hyperbola. This circle is called auxiliary circle of the hyperbola.
30. The equation to the auxiliary circle of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $x^{2}+y^{2}=a^{2}$,
31. The equation to the chord of contact of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to the hyperbola $\mathrm{S}=0$ is $\mathrm{S}_{1}=0$.
32. The equation of the polar of the point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to the hyperbola $\mathrm{S}=0$ is $\mathrm{S}_{1}=0$.
33. The pole of the line $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0(\mathrm{n} \neq 0)$ with respect to the hyperbola $\mathrm{S}=\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}-1=0$ is $\left(\frac{-\mathrm{a}^{2} l}{\mathrm{n}}, \frac{\mathrm{b}^{2} \mathrm{~m}}{\mathrm{n}}\right)$.
34. The condition for the points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ to be conjugate with respect to the hyperbola $\mathrm{S}=0$ is $\mathrm{S}_{12}=0$.
35. Two lines $L_{1}=0, L_{2}=0$ are said to be conjugate lines with respect to the hyperbola $S=0$ if the pole of $L_{1}=0$ lies on $L_{2}=0$.
36. The condition for the lines $\mathrm{l}_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0$ and $\mathrm{l}_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}=0$ to be conjugate with respect to the hyperbola $\mathrm{x}^{2} / \mathrm{a}^{2}-\mathrm{y}^{2} / \mathrm{b}^{2}=1$ is $\mathrm{a}^{2} \mathrm{l}_{1} \mathrm{l}_{2}-\mathrm{b}^{2} \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{n}_{1} \mathrm{n}_{2}$.
37. The equation of the chord of the hyperbola $\mathrm{S}=0$ having $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ as it's midpoint is $\mathrm{S}_{1}=\mathrm{S}_{11}$.
38. The equation to the pair of tangents to the hyperbola $\mathrm{S}=0$ form $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{S}_{1}{ }^{2}=\mathrm{S}_{11} \mathrm{~S}$.
39. The tangents of a hyperbola which touch the hyperbola at infinity are called asymptotes of the hyperbola.
40. The equation of the asymptotes of the hyperbola $S=0$ are $\frac{x}{a} \pm \frac{y}{b}=0$.
41. The equation to the pair of asymptotes of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$.
42. The equations to the pair of asymptotes and the hyperbola differ by a constant.
43. Asymptotes of a hyperbola passes through the centre of the hyperbola.
44. Asymptotes are equally inclined to the axes of the hyperbola.
45. The angle between the asymptotes of the hyperbola $S=0$ is $2 \operatorname{Tan}^{-1} \mathrm{~b} / \mathrm{a}$ or $2 \sec ^{-1} \mathrm{e}$.
46. A point (x, y) on the hyperbola $\mathrm{x}^{2} / \mathrm{a}^{2}-\mathrm{y}^{2} / \mathrm{b}^{2}=1$ represented as $\mathrm{x}=\mathrm{a} \sec \theta, \mathrm{y}=\mathrm{btan} \theta$ in a single parameter θ. These equations $\mathrm{x}=\operatorname{asec} \theta, \mathrm{y}=\mathrm{btan} \theta$ are called parametric equations of the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$. The point $(a \sec \theta, b \tan \theta)$ is simply denoted by θ.
47. A point on the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$ can also be represented by (a cosh $\theta, b \sinh \theta$). The equations $\mathrm{x}=\operatorname{acosh} \theta, \mathrm{y}=\operatorname{bsinh} \theta$ are also called parametric equation of the hyperbola $\mathrm{x}^{2} / \mathrm{a}^{2}-$ $y^{2} / b^{2}=1$.
48. The equation of the chord joining two points α and β on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{x}{a} \cos \frac{\alpha-\beta}{2}-\frac{y}{b} \sin \frac{\alpha+\beta}{2}=\cos \frac{\alpha+\beta}{2}$.
49. The equation of the tangent at $P(\theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=1$.
50. The equation of the normal at $P(\theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}$.
51. The curve represented by $S \equiv a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is
i) a pair of parallel lines if $h^{2}=a b, a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
ii) a parabola if $h^{2}=a b$, $a b c+2 f g h-a f^{2}-b g^{2}-\mathrm{ch}^{2}=0$
iii)an ellipse if $h^{2}<a b$
iv) a circle if $\mathrm{a}=\mathrm{b}, \mathrm{h}=0, \mathrm{~g}^{2}+\mathrm{f}^{2}-\mathrm{ac} \geq 0$
v) a pair of intersecting lines if $h^{2}>a b, a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
vi) a hyperbola if $h^{2}>a b, a b c+2 f g h-a f^{2}-b g^{2}-\mathrm{ch}^{2} \neq 0$.
52. The equation to the pair of asymptotes of the hyperbola $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is $a x^{2}$ $+2 h x y+b^{2}+2 g x+2 f y+c-\frac{\Delta}{a b-h^{2}}=0$.
53. The condition that the line $l x+m y+n=0$ to be a normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{\mathrm{a}^{2}}{\mathrm{l}^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{~m}^{2}}=\frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}}{\mathrm{n}^{2}}$.
54. The equation of a rectangular hyperbola whose asymptotes are the coordinate axes is $x y=c^{2}$.
55. The parametric equation of $x y=c^{2}$ are $x=c t, y=c / t$.
56. The eccentricity of $x y=c^{2}$ is $\sqrt{2}$
